Home
API
Examples
Github
Home
API
Examples
Github
  • API

    • cluster

      • KMeans
    • datasets

      • Boston
      • HeartDisease
      • Iris
    • decomposition

      • PCA
    • ensemble

      • BaggingClassifier
      • RandomForestClassifier
    • feature_extraction

      • CountVectorizer
    • linear_model

      • Lasso
      • LinearRegression
      • LogisticRegression
      • Ridge
      • SGDClassifier
      • SGDRegressor
    • metrics

      • accuracyScore
      • confusion_matrix
      • mean_absolute_error
      • mean_squared_error
      • mean_squared_log_error
      • zeroOneLoss
    • model_selection

      • KFold
      • train_test_split
    • naive_bayes

      • GaussianNB
      • MultinomialNB
    • neighbors

      • KNeighborsClassifier
    • preprocessing

      • Binarizer
      • Imputer
      • LabelEncoder
      • MinMaxScaler
      • OneHotEncoder
      • PolynomialFeatures
      • add_dummy_feature
      • normalize
    • svm

      • BaseSVM
      • NuSVC
      • NuSVR
      • OneClassSVM
      • SVC
      • SVR
    • tree

      • DecisionTreeClassifier

neighbors.KNeighborsClassifier

Usage

const knn = new KNeighborsClassifier();
const X = [[0, 0, 0], [0, 1, 1], [1, 1, 0], [2, 2, 2], [1, 2, 2], [2, 1, 2]];
const y = [0, 0, 0, 1, 1, 1];
knn.fit(X ,y);
console.log(knn.predict([1, 2])); // predicts 1

Constructors

  • constructor

Methods

  • fit

  • fromJSON

  • predict

  • toJSON

Constructors


constructor

⊕ KNeighborsClassifier(__namedParameters: `object`)

Defined in neighbors/classification.ts:34

Parameters:

ParamTypeDefaultDescription
options.distancestringDIST_EUC
options.knumber0
options.typestringTYPE_KD

Returns: KNeighborsClassifier

Methods


λ fit

Train the classifier with input and output data

Defined in neighbors/classification.ts:74

Parameters:

ParamTypeDefaultDescription
XunknownTraining data.
yunknownTarget data.

Returns:

void

λ fromJSON

Restores the model from a JSON checkpoint

Defined in neighbors/classification.ts:141

Parameters:

ParamTypeDefaultDescription
options.classesanynull
options.distanceanynull
options.kanynull
options.treeanynull
options.typeanynull

Returns:

void

λ predict

Predict single value from a list of data

Defined in neighbors/classification.ts:157

Parameters:

ParamTypeDefaultDescription
XT[] or T[][]Prediction data.

Returns:

any

λ toJSON

Return the model's state as a JSON object

Defined in neighbors/classification.ts:102

Returns:

ParamTypeDescription
classesany[]classes used for KNN tree
distanceanyChoice of distance function, should choose between euclidean
knumberNumber of neighbors to classify
treeanyKNN tree
typestringType of algorithm to use, choose between kdtree(default)