Home
API
Examples
Github
Home
API
Examples
Github
  • API

    • cluster

      • KMeans
    • datasets

      • Boston
      • HeartDisease
      • Iris
    • decomposition

      • PCA
    • ensemble

      • BaggingClassifier
      • RandomForestClassifier
    • feature_extraction

      • CountVectorizer
    • linear_model

      • Lasso
      • LinearRegression
      • LogisticRegression
      • Ridge
      • SGDClassifier
      • SGDRegressor
    • metrics

      • accuracyScore
      • confusion_matrix
      • mean_absolute_error
      • mean_squared_error
      • mean_squared_log_error
      • zeroOneLoss
    • model_selection

      • KFold
      • train_test_split
    • naive_bayes

      • GaussianNB
      • MultinomialNB
    • neighbors

      • KNeighborsClassifier
    • preprocessing

      • Binarizer
      • Imputer
      • LabelEncoder
      • MinMaxScaler
      • OneHotEncoder
      • PolynomialFeatures
      • add_dummy_feature
      • normalize
    • svm

      • BaseSVM
      • NuSVC
      • NuSVR
      • OneClassSVM
      • SVC
      • SVR
    • tree

      • DecisionTreeClassifier

metrics.zeroOneLoss

▸ zeroOneLoss(y_true: `object`, y_pred: `object`, normalize: `object`)

Usage

import { zeroOneLoss } from 'machinelearn/metrics';

const loss_zero_one_result = zeroOneLoss(
  [1, 2, 3, 4],
  [2, 2, 3, 5]
);
console.log(loss_zero_one_result); // 0.5

Defined in metrics/classification.ts:145

Parameters:

ParamTypeDefaultDescription
y_trueanynullGround truth (correct) labels.
y_predanynullPredicted labels, as returned by a classifier.
options.normalizebooleantrue

Returns:

number

Prev
mean_squared_log_error