Home
API
Examples
Github
Home
API
Examples
Github
  • API

    • cluster

      • KMeans
    • datasets

      • Boston
      • HeartDisease
      • Iris
    • decomposition

      • PCA
    • ensemble

      • BaggingClassifier
      • RandomForestClassifier
    • feature_extraction

      • CountVectorizer
    • linear_model

      • Lasso
      • LinearRegression
      • LogisticRegression
      • Ridge
      • SGDClassifier
      • SGDRegressor
    • metrics

      • accuracyScore
      • confusion_matrix
      • mean_absolute_error
      • mean_squared_error
      • mean_squared_log_error
      • zeroOneLoss
    • model_selection

      • KFold
      • train_test_split
    • naive_bayes

      • GaussianNB
      • MultinomialNB
    • neighbors

      • KNeighborsClassifier
    • preprocessing

      • Binarizer
      • Imputer
      • LabelEncoder
      • MinMaxScaler
      • OneHotEncoder
      • PolynomialFeatures
      • add_dummy_feature
      • normalize
    • svm

      • BaseSVM
      • NuSVC
      • NuSVR
      • OneClassSVM
      • SVC
      • SVR
    • tree

      • DecisionTreeClassifier

linear_model.LogisticRegression

Usage

import { LogisticRegression } from 'machinelearn/linear_model';
import { HeartDisease } from 'machinelearn/datasets';

(async function() {
  const { data, targets } = await heartDisease.load();
  const { xTest, xTrain, yTest } = train_test_split(data, targets);

  const lr = new LogisticRegression();
  lr.fit(xTrain, yTrain);

  lr.predict(yTest);
});

Constructors

  • constructor

Methods

  • fit

  • fromJSON

  • predict

  • toJSON

Constructors


constructor

⊕ LogisticRegression(__namedParameters: `object`)

Defined in linear_model/logistic_regression.ts:42

Parameters:

ParamTypeDefaultDescription
options.learning_ratenumber0.001
options.num_iterationsnumber4000

Returns: LogisticRegression

Methods


λ fit

Fit the model according to the given training data.

Defined in linear_model/logistic_regression.ts:63

Parameters:

ParamTypeDefaultDescription
Xnumber[] or number[][]nullA matrix of samples
ynumber[]nullA matrix of targets

Returns:

void

λ fromJSON

Restore the model from a checkpoint

Defined in linear_model/logistic_regression.ts:114

Parameters:

ParamTypeDefaultDescription
options.learning_ratenumbernull
options.weightsnumber[]null

Returns:

void

λ predict

Predict class labels for samples in X.

Defined in linear_model/logistic_regression.ts:83

Parameters:

ParamTypeDefaultDescription
Xnumber[] or number[][]nullA matrix of test data

Returns:

number[]

λ toJSON

Get the model details in JSON format

Defined in linear_model/logistic_regression.ts:95

Returns:

ParamTypeDescription
learning_ratenumberModel learning rate
weightsnumber[]Model training weights
Prev
LinearRegression
Next
Ridge