linear_model.SGDRegressor
Usage
import { SGDRegressor } from 'machinelearn/linear_model';
const reg = new SGDRegressor();
const X = [[0., 0.], [1., 1.]];
const y = [0, 1];
reg.fit(X, y);
reg.predict([[2., 2.]]); // result: [ 1.281828588248001 ]
Constructors
Properties
Methods
Constructors
constructor
⊕ SGDRegressor(__namedParameters: `object`)
Defined in linear_model/stochastic_gradient.ts:40
Parameters:
| Param | Type | Default | Description | 
|---|---|---|---|
| options.clone | boolean | true | |
| options.epochs | number | 10000 | |
| options.learning_rate | number | 0.0001 | |
| options.loss | string | TypeLoss.L2 | |
| options.random_state | number | null | 
Returns: SGDRegressor
Properties
▸ epochs
Defined in linear_model/stochastic_gradient.ts:27
▸ learningRate
Defined in linear_model/stochastic_gradient.ts:26
▸ loss
Defined in linear_model/stochastic_gradient.ts:28
▸ regFactor
Defined in linear_model/stochastic_gradient.ts:29
Methods
λ fit
Train the base SGD
Defined in linear_model/stochastic_gradient.ts:102
Parameters:
| Param | Type | Default | Description | 
|---|---|---|---|
| X | number[][] | null | Matrix of data | 
| y | number[] | null | Matrix of targets | 
Returns:
void
λ fromJSON
Restore the model from a checkpoint
Defined in linear_model/stochastic_gradient.ts:151
Parameters:
| Param | Type | Default | Description | 
|---|---|---|---|
| options.epochs | number | 10000 | |
| options.learning_rate | number | 0.0001 | |
| options.random_state | number | null | |
| options.weights | number[] | [] | 
Returns:
void
λ predict
Predicted values
Defined in linear_model/stochastic_gradient.ts:297
Parameters:
| Param | Type | Default | Description | 
|---|---|---|---|
| X | number[][] | null | Matrix of data | 
Returns:
number[]
λ toJSON
Save the model's checkpoint
Defined in linear_model/stochastic_gradient.ts:118
Returns:
| Param | Type | Description | 
|---|---|---|
| epochs | number | model training epochs | 
| learning_rate | number | model learning rate | 
| random_state | number | Number used to set a static random state | 
| weights | number[] | Model training weights |