Home
API
Examples
Github
Home
API
Examples
Github
  • API

    • cluster

      • KMeans
    • datasets

      • Boston
      • HeartDisease
      • Iris
    • decomposition

      • PCA
    • ensemble

      • BaggingClassifier
      • RandomForestClassifier
    • feature_extraction

      • CountVectorizer
    • linear_model

      • Lasso
      • LinearRegression
      • LogisticRegression
      • Ridge
      • SGDClassifier
      • SGDRegressor
    • metrics

      • accuracyScore
      • confusion_matrix
      • mean_absolute_error
      • mean_squared_error
      • mean_squared_log_error
      • zeroOneLoss
    • model_selection

      • KFold
      • train_test_split
    • naive_bayes

      • GaussianNB
      • MultinomialNB
    • neighbors

      • KNeighborsClassifier
    • preprocessing

      • Binarizer
      • Imputer
      • LabelEncoder
      • MinMaxScaler
      • OneHotEncoder
      • PolynomialFeatures
      • add_dummy_feature
      • normalize
    • svm

      • BaseSVM
      • NuSVC
      • NuSVR
      • OneClassSVM
      • SVC
      • SVR
    • tree

      • DecisionTreeClassifier

linear_model.SGDRegressor

Usage

import { SGDRegressor } from 'machinelearn/linear_model';
const reg = new SGDRegressor();
const X = [[0., 0.], [1., 1.]];
const y = [0, 1];
reg.fit(X, y);
reg.predict([[2., 2.]]); // result: [ 1.281828588248001 ]

Constructors

  • constructor

Properties

  • epochs

  • learningRate

  • loss

  • regFactor

Methods

  • fit

  • fromJSON

  • predict

  • toJSON

Constructors


constructor

⊕ SGDRegressor(__namedParameters: `object`)

Defined in linear_model/stochastic_gradient.ts:40

Parameters:

ParamTypeDefaultDescription
options.clonebooleantrue
options.epochsnumber10000
options.learning_ratenumber0.0001
options.lossstringTypeLoss.L2
options.random_statenumbernull

Returns: SGDRegressor

Properties


▸ epochs

Defined in linear_model/stochastic_gradient.ts:27

▸ learningRate

Defined in linear_model/stochastic_gradient.ts:26

▸ loss

Defined in linear_model/stochastic_gradient.ts:28

▸ regFactor

Defined in linear_model/stochastic_gradient.ts:29

Methods


λ fit

Train the base SGD

Defined in linear_model/stochastic_gradient.ts:102

Parameters:

ParamTypeDefaultDescription
Xnumber[][]nullMatrix of data
ynumber[]nullMatrix of targets

Returns:

void

λ fromJSON

Restore the model from a checkpoint

Defined in linear_model/stochastic_gradient.ts:151

Parameters:

ParamTypeDefaultDescription
options.epochsnumber10000
options.learning_ratenumber0.0001
options.random_statenumbernull
options.weightsnumber[][]

Returns:

void

λ predict

Predicted values

Defined in linear_model/stochastic_gradient.ts:297

Parameters:

ParamTypeDefaultDescription
Xnumber[][]nullMatrix of data

Returns:

number[]

λ toJSON

Save the model's checkpoint

Defined in linear_model/stochastic_gradient.ts:118

Returns:

ParamTypeDescription
epochsnumbermodel training epochs
learning_ratenumbermodel learning rate
random_statenumberNumber used to set a static random state
weightsnumber[]Model training weights
Prev
SGDClassifier