Home
API
Examples
Github
Home
API
Examples
Github
  • API

    • cluster

      • KMeans
    • datasets

      • Boston
      • HeartDisease
      • Iris
    • decomposition

      • PCA
    • ensemble

      • BaggingClassifier
      • RandomForestClassifier
    • feature_extraction

      • CountVectorizer
    • linear_model

      • Lasso
      • LinearRegression
      • LogisticRegression
      • Ridge
      • SGDClassifier
      • SGDRegressor
    • metrics

      • accuracyScore
      • confusion_matrix
      • mean_absolute_error
      • mean_squared_error
      • mean_squared_log_error
      • zeroOneLoss
    • model_selection

      • KFold
      • train_test_split
    • naive_bayes

      • GaussianNB
      • MultinomialNB
    • neighbors

      • KNeighborsClassifier
    • preprocessing

      • Binarizer
      • Imputer
      • LabelEncoder
      • MinMaxScaler
      • OneHotEncoder
      • PolynomialFeatures
      • add_dummy_feature
      • normalize
    • svm

      • BaseSVM
      • NuSVC
      • NuSVR
      • OneClassSVM
      • SVC
      • SVR
    • tree

      • DecisionTreeClassifier

cluster.KMeans

Usage

import { KMeans } from 'machinelearn/cluster';

const kmean = new KMeans({ k: 2 });
const clusters = kmean.fit([[1, 2], [1, 4], [1, 0], [4, 2], [4, 4], [4, 0]]);

const result = kmean.predict([[0, 0], [4, 4]]);
// results in: [0, 1]

Constructors

  • constructor

Methods

  • fit

  • fromJSON

  • predict

  • toJSON

Constructors


constructor

⊕ KMeans(__namedParameters: `object`)

Defined in cluster/k_means.ts:34

Parameters:

ParamTypeDefaultDescription
options.distance'euclidean'
options.knumber3
options.maxIterationnumber300
options.randomStatenumber0

Returns: KMeans

Methods


λ fit

Compute k-means clustering.

Defined in cluster/k_means.ts:75

Parameters:

ParamTypeDefaultDescription
Xnumber[][]nullarray-like or sparse matrix of shape = [n_samples, n_features]

Returns:

void

λ fromJSON

Restores the model from checkpoints

Defined in cluster/k_means.ts:163

Parameters:

ParamTypeDefaultDescription
centroidsnumber[][]null
clustersnumber[]null
options.knumbernull

Returns:

void

λ predict

Predicts the cluster index with the given X

Defined in cluster/k_means.ts:134

Parameters:

ParamTypeDefaultDescription
Xnumber[][]nullarray-like or sparse matrix of shape = [n_samples, n_features]

Returns:

number[]

λ toJSON

Get the model details in JSON format

Defined in cluster/k_means.ts:145

Returns:

ParamTypeDescription
knumberundefined