cluster.KMeans
Usage
import { KMeans } from 'machinelearn/cluster';
const kmean = new KMeans({ k: 2 });
const clusters = kmean.fit([[1, 2], [1, 4], [1, 0], [4, 2], [4, 4], [4, 0]]);
const result = kmean.predict([[0, 0], [4, 4]]);
// results in: [0, 1]
Constructors
Methods
Constructors
constructor
⊕ KMeans(__namedParameters: `object`)
Defined in cluster/k_means.ts:34
Parameters:
Param | Type | Default | Description |
---|---|---|---|
options.distance | 'euclidean' | ||
options.k | number | 3 | |
options.maxIteration | number | 300 | |
options.randomState | number | 0 |
Returns: KMeans
Methods
λ fit
Compute k-means clustering.
Defined in cluster/k_means.ts:75
Parameters:
Param | Type | Default | Description |
---|---|---|---|
X | number[][] | null | array-like or sparse matrix of shape = [n_samples, n_features] |
Returns:
void
λ fromJSON
Restores the model from checkpoints
Defined in cluster/k_means.ts:163
Parameters:
Param | Type | Default | Description |
---|---|---|---|
centroids | number[][] | null | |
clusters | number[] | null | |
options.k | number | null |
Returns:
void
λ predict
Predicts the cluster index with the given X
Defined in cluster/k_means.ts:134
Parameters:
Param | Type | Default | Description |
---|---|---|---|
X | number[][] | null | array-like or sparse matrix of shape = [n_samples, n_features] |
Returns:
number[]
λ toJSON
Get the model details in JSON format
Defined in cluster/k_means.ts:145
Returns:
Param | Type | Description |
---|---|---|
k | number | undefined |